

Targeting and Exploiting Android
Devices via Hostile Networks

By Yakov Shafranovich
yakov@nightwatchcybersecurity.com

December 2nd, 2016

Disclaimer:

Don’t do anything without talking to your
mother and your lawyer first!

About Me

● Developer most of my professional career
● Security bug bounty hunter on the side
● Recently switched to application security full time but
I’m here personally, not on behalf of my
employer

● Was involved in some early anti-spam work:
● Co-chaired IRTF’s Anti Spam Research Group
● Involved in IETF / pre-standards work for SPF and

DKIM
● Created the MARF protocol for exchanging spam

reports (RFC 5965)
● Also did some non-security standards work:

● RFCs 4180 (CSV files) and 6922 (SQL MIME type)
● Participated in W3C’s CSV for the Web WG

Part 1
Finding Vulnerable Devices

“One Ring to rule them all, One Ring to find them...

Goals

● Find what firmware/security patches are on the
device

● Different than fingerprinting – we don’t care about
identifying the user or phone model – we want to
know how secure the user’s device is

● Do it passively without user interaction

● Rinse and repeat on a massive scale

How?

User Agents!

How?

User Agents:
● Sent with every HTTP request
● Visible when SSL is not used
● Contains information about the user’s device and software

From RFC 7231, section 5.5.3:
The "User-Agent" header field contains information about the user agent
originating the request, which is often used by servers to help identify the scope of
reported interoperability problems, to work around or tailor responses to avoid particular
user agent limitations, and for analytics regarding browser or operating system use. A user
agent SHOULD send a User-Agent field in each request unless specifically
configured not to do so.

User Agents SHOULD NOT include device info, but
they do anyway!

From RFC 7231, section 5.3.3:
A user agent SHOULD NOT generate a User-Agent field containing needlessly
fine-grained detail and SHOULD limit the addition of subproducts by third
parties. Overly long and detailed User-Agent field values increase request
latency and the risk of a user being identified against their wishes
("fingerprinting").

From Mozilla:
Adding a device identifier to the Firefox OS User Agent (UA) string is
STRONGLY DISCOURAGED by Mozilla.
…
Mozilla strives to provide greater privacy for users. Therefore, we have
been working to reduce the level of “fingerprintability” of different
browser configurations — that is to say, how uniquely identifiable a
particular user’s browser is to sites through detection methods of which the
user is unaware. (i.e. server-side methods) Adding e.g. hardware information
to the UA reduces privacy by increasing fingerprintability.

User Agents - Examples

Firefox on Ubuntu: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0)
Gecko/20100101 Firefox/50.0
IE11 on Windows: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0)
like Gecko
Safari on MacOS: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11)
AppleWebKit/601.1.39 (KHTML, like Gecko) Version/9.0 Safari/601.1.39
OkHttp (Java HTTP library): okhttp/2.3.0
Nexus 10 / Android 4.2: Mozilla/5.0 (Linux; U; Android 4.2; en-us;
Nexus 10 Build/JVP15I) AppleWebKit/534.30 (KHTML, like Gecko)
Version/4.0 Safari/534.30
Apple News on iOS 10: Mozilla/5.0 (iPhone; CPU iPhone OS 10_0 like
Mac OS X) AppleWebKit/602.1.43 (KHTML, like Gecko) AppleNews/607
Version/2.0
Microsoft Lumia 950, Windows Phone 10: Mozilla/5.0 (Windows Phone
10.0; Android 4.2.1; Microsoft; Lumia 950) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/46.0.2486.0 Mobile Safari/537.36
Edge/13.10586
IOS applications using NSURL: app/1 CFNetwork/758.0.2 Darwin/15.0.0

But?

Can user agents tell us about the security
status of a given mobile device???

YES

According to the NSA (in 2010)

“User-Agents can … identify CNE (Computer Network
Exploitation) opportunities”

“Mobile user agents also usually give you the phone
model (Read: IMEI correlation opportunities)”

From the NSA User Agent Briefing (circa 2010), published by the Intercept:
https://theintercept.com/document/2015/07/01/user-agents/

Anatomy of an Android User Agent

From Google’s Webmaster Blog:
https://webmasters.googleblog.com/2011/03/mo-better-to-also-detect-mobile-user.html

Many Types of Android User Agents

● Chrome web browser on Android
● Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)
AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133 Mobile
Safari/535.19

● Chrome web view – before Android 5.0
● Mozilla/5.0 (Linux; Android 4.1.1; ALCATEL ONE TOUCH 5020X Build/JRO03C)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.59 Mobile
Safari/537.36

● Chrome web view – after Android 5.0 – note the “wv” string
● Mozilla/5.0 (Linux; Android 5.1.1; Nexus 5 Build/LMY48B; wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/43.0.2357.65
Mobile Safari/537.36

● Android’s HTTP Client – used by default by most apps
● Dalvik/2. 1. 0 (Linux; U; Android 5.0.2; D5503 Build/14.5.A.0.270)

● Other libraries:
● Apache HttpClient on Android

● Apache-HttpClient/UNAVAILABLE (java 1.4)
● OkHttp on Android

● okhttp/2.3.0
● Etc.

About Android Builds

Android devices have a build-in MODEL and build ID, identifying
the phone model and Android build. They are defined in in
android.os.Build.MODEL and android.os.Build.ID properties.
(There is usually also a timestamp in the ROM image itself)

The ID is defined in the Android Compatibility Definition document
as follows:

The Problem with Builds

● On desktop OSes like Windows and Linux, patches (and
security patches) are granular and not “all in one”

● BUT on mobile devices OS patches are monolithic -
packaging all patches into a single new build

● Every build on Android maps to a specific set of patches

● Builds can often be mapped to a specific phone model and
carrier, but not always (and we don’t care anyway)

● Recent Android builds can be mapped to a specific Android
patch level – every monthly Android patch release results
in one or more new builds

The Problem with Builds

Given a particular Android build, you can
figure out what security patches it has, and
what security patches it DOES NOT have,
and the date it was made
...
BUT – someone has to go out and collect the
information about builds to make it happen

Should be Trivial for Google Devices

Starting with Cupcake, individual builds are identified with a short build code, e.g.
FRF85B.

The first letter is the code name of the release family, e.g. F is Froyo.

The second letter is a branch code that allows Google to identify the exact code branch
that the build was made from, and R is by convention the primary release branch.

The next letter and two digits are a date code. The letter counts quarters, with A
being Q1 2009. Therefore, F is Q2 2010. The two digits count days within the quarter,
so F85 is June 24 2010.

Finally, the last letter identifies individual versions related to the same date code,
sequentially starting with A; A is actually implicit and usually omitted for brevity.

The date code is not guaranteed to be the exact date at which a build was made, and it
is common that minor variations added to an existing build re-use the same date code as
that existing build.

From Google docs:
https://source.android.com/source/build-numbers.html#platform-code-names-versions-api-

levels-and-ndk-releases

Example Android User Agents
Mappings

IMM76B - Galaxy Nexus; v4.0.4; built on March 21st, 2012

LMY48B – Nexus 5; v5.1.1 Released May 21st, 2015

D5503 – Sony Xperia Z1; Android v5.1.1; released Nov 5th, 2014

MPA44G – Android 6.0 third developer preview for Nexus
phones; released August 17th, 2015

MOB30M - BLU Life; v6.0.1; build on June 12th, 2016

N930AUCS1APH1 – Android v6.0.1; Galaxy Note 7 for AT&T;
August 20th, 2016

Things that make this worse

● Android apps and the OS will often start sending data right
after connecting to a new network

● No user interaction needed

● Data will continue to be sent at regular intervals without
user interaction

● Most apps use the default Android network library

● Some of that data will be unencrypted (unlike iOS which
will soon mandate SSL)

● A lot of Android apps include third party libraries that do
their own random network calls, often not encrypted

Examples - WhatsApp

WhatsApp uses E2E encryption with the Signal protocol, yet still
connects without encryption when a new network is detected!

Examples – IOT Control App

Third-party service being called

Examples – Adobe AIR Runtime

Adobe security bulletin: ASPB16-31
My bug: CVE-2016-6936

Adobe AIR is a developer product which allows the same application
code to be compiled and run across multiple desktop and mobile
platforms. While monitoring network traffic during testing of
several Android applications we observed network traffic over HTTP
without the use of SSL going to several Adobe servers including the
following:

● airdownload2.adobe.com
● mobiledl.adobe.com

Because encryption is not used, this would allow a network-level
attacker to observe the traffic and compromise the privacy of the
applications’ users.

This affects applications compiled with the Adobe AIR SDK versions
22.0.0.153 and earlier.

Examples – Android OS

Retrieving some files without encryption – more in part 2!

● Android apps can choose to override the user agent –
for example, FireFox for Android does not reveal build
numbers

● It is also possible to do this for iOS by correlation the
CFNetwork ID numbers against builds

● I filed a bug with Google but it was rejected

● Chrome for Android, in Desktop mode DOES NOT leak
build numbers

● More Research is Needed

Some additional notes

Part 2
Exploiting Vulnerable Devices

… One Ring to bring them all and in the darkness bind them”

If we know what firmware is on the device,
how do we exploit it?

Autotarget exploits via Chrome:
StageFright/CVE-2015-3864

Inspect traffic, find matching devices
to the exploit, and inject in HTTP traffic

from Chrome browser on Android

Or find an OS process that can be crashed or
injected because it’s trusting the network

(if you are like me and can’t write binary exploits)

My bugs:
● CVE-2016-6723 – crashing Android with large PAC files –

patched in Nov 2016
● CVE-2016-5348 – crashing Android with GPS XTRA files –

patched in Oct 2016
● CVE-2016-5341 – UNPATCHED

● CVE-2016-6723 – Crashing Android with large PAC
files

● When connecting an Android device to a network using a
proxy, sometimes you have to use a PAC file

● PAC files aren’t always served over SSL since the local
network is supposed to be secure

● What happens if you are on the same network and
intercept the PAC call? CRASH!!! - device reboots

● Because Android doesn’t support WPAD there is no way to
fool a device into configuring itself with a PAC file – must
be done manually

● Scary thought for further research – PAC files are
written in Javascript

● CVE-2016-6723 – Crashing Android with large PAC
files

Sample PAC file:

function FindProxyForURL(url, host) {
 if (isResolvable(host))
 return "DIRECT";
 else
 return "PROXY proxy.mydomain.com:8080";
 }
}

● CVE-2016-6723 – Crashing Android with large PAC
files

● Caused by Java code in the Android platform which
never checks the length of received packets

● Why is this running on the OS level???

PacManager.java, lines 120-127):
private static String get(Uri pacUri) throws IOException {
 URL url = new URL(pacUri.toString());
 URLConnection urlConnection =
url.openConnection(java.net.Proxy.NO_PROXY);
 return new
String(Streams.readFully(urlConnection.getInputStream()));
}

● CVE-2016-5348 – Crashing Android with large GPS
XTRA files

● When an Android phone connects to a new network, it will
automatically retrieve a special file to help with GPS satellite
resolution – GPS XTRA – xtra2.bin – NO SSL

● Contains almanac information about the locations of various GPS
satellites for the next 7 days

● Other devices using Qualcomm chips may be affected

● The file is fetched by the Java layer, handed off to JNI C++ code,
and then injected into the Qualcomm modem

● If the request is intercepted and a large enough file is
returned the device will crash

● Further research on attacking the modem is needed

● CVE-2016-5348 – Crashing Android with large GPS
XTRA files

● CVE-2016-5348 – Crashing Android with large GPS
XTRA files

● CVE-2016-5348 – Crashing Android with large GPS
XTRA files

● Caused by Java code in the Android platform which
never checks the length of received packets

● Also has C++ code that doesn’t check either
● Once again, why is this running in the OS level???

GpsXtraDownloader.java, lines 120-127):
connection.connect();
int statusCode = connection.getResponseCode();
...
Streams.readFully(connection.getInputStream());

com_android_server_location_GnssLocationProvider.cpp, lines 856-858):
jbyte* bytes = (jbyte *)env->GetPrimitiveArrayCritical(data, 0);
sGpsXtraInterface->inject_xtra_data((char *)bytes, length);
env->ReleasePrimitiveArrayCritical(data, bytes, JNI_ABORT);

CVE-2016-5341

● Dates back to 2007

● Has been known to Qualcomm since 2014

● The root cause of CVE-2016-5348

● This is a Qualcomm, not Android issue

● Currently UNPATCHED

● Android patches to be released on Monday (12/5)

● Other Qualcomm partners have been notified in September

CVE-2016-5341

CVE-2016-5341

● Qualcomm provides three types of data files:
● Xtra.bin – has a simple checksum
● Xtra2.bin – has a simple checksum
● Xtra3.bin – digitally signed

● Includes almanac data for GPS, Glonass, Galileo, etc.

● Currently delivered without SSL, but SSL is now available

● Potentially used in any device with a Qualcomm GPS chip

● Apple and Microsoft devices not affected since they use a
secure channel to deliver the files (unverified)

More fun – crashing search engines
via search suggestions

● After finding the PAC and GPS bugs, I looked for other places in
the Android source where Streams.readFully is used

● Found it in search suggestions in the Android v4 browser

● If the search engine doesn’t support SSL, this will be done via
HTTP

● Can be intercepted, malformed and make the browser crash; can
also be used to inject fake results

● Also affects desktop browsers and will not be fixed; still a
problem because 1 of the top 5 search engines in the US doesn’t
use SSL (it’s AOL)

● Other countries also have search engines without SSL

More fun – crashing search engines
via search suggestions

More fun - messing with unencrypted
apps

● Some other ways to mess with Android apps that don’t use SSL
(must use arp spoofing or take over the router)

● If an app is doing a version check, MITM and return nothing:
● Instead of {“updateVersionAvailable”: true”}
● Return “{}”/“” - blocks the user from knowing about updates

● If an app is retrieving static assets like images – inject your own!

● Return a malformed or very large packet and crash the app

● WhatsApp is doing a connection check – make it think its offline

● The network should be considered hostile!

What Can We Do?

● App developers:
● Change the user agent or use okhttp, etc.
● Use SSL, always and correctly
● Protect your users’ privacy
● Do not trust the network, ever
● Be cognizant of third party libraries/services and

hold them to the same standards as your own app

● OS Developers:
● Force app developers to always use SSL
● Stop leaking data about users and devices
● Do not trust the network, ever

Everything covered here is also published on my blog:
wwws.nightwatchcybersecurity.com

Questions? Comments?
Email: research@nightwatchcybersecurity.com

