
an Developer eBook
®

HTML5:
An Introduction

2	 Learning About HTML5

4	 Differences Between HTML 4 and HTML5

6	 Multimedia In HTML5

8	 The HTML5 Video Element

10	 How To Use the Audio Tag

12	 Using The HTML5 Canvas Element

4

8

2

6

Contents…

HTML5 is an emerging standard web developers are embracing everywhere. The
HTML5 standards define new functionality that is being embraced by most of
the key web browsers, including Microsoft Internet Explorer 9. In this ebook, you
will be introduced to the basic features of HTML5 that you can use within your
web sites now.

This content was adapted from QuinStreet’s HTMLGoodies
website. Contributors:.David Fiedler and Scott Clark.

HTML5: An Introduction

12

10

http://www.htmlgoodies.com/

2 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

TML5, depending on who you listen to, may
be either a disruptive new technology that
has the potential to bring entire companies
to their knees, or a smooth transition from

current HTML 4.0 that promises to make life much easier
for developers. Both are at least partially true, and in this
continuing series, I hope to help you make sense out of
HTML5: both business sense and nuts-and-bolts coding-
level sense.

HTML5 is most definitely a work in progress. It began to
take shape back in 2004, and the official specification
may not be actually complete until the year 2022! But
HTML5 is already here, in everything from your current
desktop browser to your new smartphone, so there’s no
problem with getting started.

So Let’s Get Started with HTML5

Perhaps the most important thing to understand about
HTML5 is not the coding details and changes themselves,
but the high-level functions they give you access to. In
fact, HTML5 is all about high-level functions rather than
details. For instance, instead of thinking of multimedia
objects and then defining them as video or audio and so
on, in HTML5 you can simply write something like:

<video src=”watchthis.mp4” width=”640”

height=”480”>

	 Here’s my video

</video>

This functional methodology extends even to typical
page coding. We’re all used to writing complex pages
in terms of low-level objects like </div>, which is kind
of amorphous and easy to lose track of. So we often
attempt to keep track of things by coding like this:

Web Developer Basics: Learning About HTML5
By David Fiedler and Scott Clark

H

<div id=”header”>

<H1>Web Developer Basics: Learning About

HTML5</H1>

<p class=”credit”>by David Fiedler</p>

</div>

In HTML5, we can cut right to the chase. We’re writing a
header, and now we can code it that way:

<header>

<H1>Web Developer Basics: Learning About

HTML5</H1>

<p class=”credit”>by David Fiedler</p>

</header>

So what, you might say at this point. Well, it’s not just the
header of a page that we can now view as a complete
functional object, it’s almost everything we use on a daily
basis: <header>, <footer>, <article>, <section>, <nav>,
<menu>, <figure>. This gives us tremendous flexibility

3 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

demonstrates some real power. Paste this simple little
document into a text file, and call it something like foo.
html:

<!DOCTYPE html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <title>You Can Edit This</title>

</head>

<body>

 <h1>I Mean, You Can Really Edit This</h1>

 <p contenteditable=true>

 Now is the time for all good cats to come

to the aid of their catnip.

 </p>

</body>

</html>

The only new thing here that will jump out at you is the
attribute of contenteditable on the paragraph tag. You
can use this on any element, not just a paragraph, and
it takes effect for everything within that element. Now,
open this file using any modern browser and you’ll see
that you can indeed edit the paragraph - but not the
heading! - Right in the browser.

But wait, there’s more! Change that paragraph as much
as you like, then save the page to your computer as a
new HTML file. Open it up in a text editor...and presto,
the source code has changed to reflect the text changes
you made in the browser. Shazam!

in terms of how we can think of the page. So it’s not just
easier to understand the structure of the page, it’s easier
to correctly code the structure of the page.

Begin At the Beginning

The beginning of many modern HTML 4.0 pages looks
something like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0

Strict//EN” “http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd”>

But in our brave new world of HTML5, all we need is:

<!DOCTYPE html>

Similarly, the complex XHTML boilerplate declarations
many people use can be simply replaced by:

<html lang=”en”>

and encoding declarations such as

<meta http-equiv=”Content-Type” content=”text/

html; charset=utf-8”>

can be toned down to a mere

<meta charset=”utf-8”>

Oh, and we may as well get this next bit out of the way
now, even though I hesitate to mention it for fear of being
responsible for people writing near-incomprehensible
HTML5 pages. You no longer need those double quotes
around attributes, so that <p class=credit> is now as
legal as <p class=”credit”>. But please use this power
wisely.

A Bit of Magic

Just to show that HTML5 isn’t only about structure and
saving keystrokes here and there, here’s a nice example
of an attribute feature that is simple on the surface, but

4 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

ow it’s time to take a few steps back and take
a look at some of the differences between
HTML 4 and HTML5.

This is intended to be a useful overview, not an
exhaustive reference, but remember that things are
still and always changing. The
complete, up to date list of
all the technical differences
may always be found on the
W3C’s site. You also may want
to refer to this document for
the actual details of the HTML5
specification itself.

The first thing you should know
is that, perhaps for the first time,
the development of a language
standard is acknowledging the
real world. In order to keep file
compatibility with the current
standard - which is technically
HTML 4.01 - the brave decision
was made to separate the
way the web browser renders files from the way we, as
developers, must write them. So the browser, or “user
agent”, must still process HTML4 constructs like the center
element, because there will still be millions of files on the
Internet that happen to use it. But we won’t be writing any
more HTML with center; it’s simply being dropped from
the language (use CSS instead). This compatibility goes
both ways: older browsers can (and will) simply ignore
HTML5 code without screwing things up.

No More Frames

This is great news to those of us who slogged through the
1990s. To be exact, the elements frame, frameset, and

noframes are being removed from the language, as well
as acronym, applet, basefont, big, blink, center , dir, font,
isindex, strike , tt and u. All of these can be handled using
CSS or other methods.

You’ll also have to learn to get along without using
tables for layout; while tables
themselves are still part of
HTML5, they’re not intended for
placing pixels any more. Here’s
what the spec says:

“Tables must not be used as
layout aids. Historically, some
Web authors have misused tables
in HTML as a way to control
their page layout. This usage is
non-conforming, because tools
attempting to extract tabular
data from such documents would
obtain very confusing results.”

So all the attributes that let
people create those perfectly

laid-out, tinted tables are gone, like align, bgcolor,
border, cellpadding, cellspacing, height, nowrap, rules,
valign, and the big one: width. The mantra: use CSS
instead.

I’ve been trying my best to break it to you slowly, but
frankly, all presentational elements are coming out of
HTML5. My advice: learn lots more CSS, until you can
quote chapter and verse in your sleep.

Good News

The good news is that even though this is a big change,
it’s a change for the better. Browsers of the future (just

Web Developer Basics:
Differences between HTML 4 and HTML5

By David Fiedler and Scott Clark

N

http://dev.w3.org/html5/html4-differences/
http://dev.w3.org/html5/html4-differences/

5 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

another month or two!) will become more powerful
because of the move towards the cloud, so that they’ll
be able to handle more on their own. We’ve already
seen that with things like Ajax, and now with video/audio
embedding and such, it will be far easier for us to code
in a straightforward manner and let the browser figure
out the details. For instance, new structure elements
include article, aside, figcaption, figure, footer, header,
hgroup, nav, section, and summary, all of which refer to
the structure of the document itself and leave rendering
to the browser.

There are still some new elements that deal with text
on a detailed level, however: you’ll code wbr when you
think it’s possible to do a line break, but the browser will
decide for you. Another hint element is bdi, used to mark
an area where bidirectional text formatting can be done
(primarily for mixing left-right and right-left languages

in a single document). Its complement, bdo, lets you
explicitly override and force a particular directionality.
For even more slick internationalization, the elements
ruby, rp, and rt are included for ruby annotations, which
are meant for pronunciation aids rather than for Ruby On
Rails programmers.

The more high-level new elements include things like
canvas, meant for specifying an area for drawing a
bitmapped graphic on the fly, such as a data graph or
game graphic; meter is a placeholder for a numeric
measurement of an expected size (and is eerily similar
to format in ancient FORTRAN), while progress is its
graphical counterpart, to be used where you want a
progress bar. Last, but not least, there are the multimedia
elements (audio, video, source, embed) that we cover in
another segment of this ebook.

6 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

That’s all the code you need to display MPEG-4/H.264
video in an HTML5 browser that supports the MPEG-
4/H.264 video format, with a few extra goodies even
thrown in such as a predefined video size, default
video controls, and a still thumbnail. Unfortunately, at
this writing, only Apple’s Safari and Google’s Chrome

browsers will work natively with
this particular format.

Free Me

MPEG-4 format has one other
problem which is not technical;
it’s not a “free” format. It’s
covered by patents and there
are licensing fees involved,
at least for broadcasters and
browser manufacturers. That’s
why Mozilla Firefox, Opera, and
a few other browsers support
Ogg Theora. Google recently
announced it was freeing the
VP8 video format it had acquired
with On2 Technologies, and

simultaneously announced broad industry support for
the WebM container format using VP8 video and Vorbis
audio.

As many developers will remember from the 1990s, the
reality of competing standards is that browsers end up
implementing them differently, so you have to keep the
differences in mind. Luckily, “all it takes” at this point
in time for universal support (except for some mobile
platforms) is to have all three different formats available
for each of your videos to satisfy all the HTML5 browsers
and some extra code...plus a fallback scheme for non-
HTML5 browsers (which basically means the all-purpose

Web Developer Basics: Multimedia in HTML5
By David Fiedler and Scott Clark

ow you’ll see how support for various
multimedia formats in HTML5 will make
things much easier for you as a developer...
eventually.

See Me, Hear Me

We’ll start with the good news.
HTML5 is fairly intelligent about
picking the right default for
presenting the most optimum
audio or video. Couple that
with the absolute minimum
coding that’s needed to handle
multimedia in HTML5 and you
have a pretty good situation for
developers.

The bad news is that because
the people diligently working on
the HTML5 specification tried
to compromise between open
formats and de facto standard
formats and so on, support for
native codecs in HTML5 is slightly lacking: there isn’t
any. It’s up to the browser to support formats, and up
to the developer to supply them. What’s emerged from
that are a few relatively new standards. So unless you’re
a video or audio enthusiast, you may have to learn a few
new things (and worse, convert your legacy media!). But
when all is said and done, programs do all the hard work
anyway, so it’s certainly not a deal-breaker.

<video controls width=”640” height=”480”

src=”sample.mp4” poster=”sample.jpg”>

</video>

N

7 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

Flash plugin). Love it or hate it, you can’t live without it
yet.

<video controls width=”640” height=”480”

poster=”sample.jpg”>

	 <source src=”sample.mp4” type=’video/mp4;

codecs=”avc1.42E01E, mp4a.40.2”’>

	 <source src=”sample.webm” type=’video/webm;

codecs=”vp8, vorbis”’>

	 <source src=”sample.ogv” type=’video/ogg;

codecs=”theora, vorbis”’>

	 <object width=”640” height=”480”

type=”application/x-shockwave-flash”

data=”flowplayer-3.2.1.swf”>

		 <param name=”movie” value=”flowplayer-

3.2.1.swf”>

		 <param name=”allowfullscreen” value=”true”>

		 <param name=”flashvars”

value=’config={“clip”: {“url”: “http://yourdomain.

com/videos/sample.mp4”, “autoPlay”:false,

“autoBuffering”:true}}’>

	 <p>If you can read this, you’re using a pre-

HTML5 browser without Flash.</p>

	 </object>

</video>

This extra MIME type specification certainly isn’t there
to pretty up the code, and it’s not strictly necessary,
but if you don’t write it in accurately, then the browser
is going to have to download each video file format in
order until it finds one that it can play. And by that, we
mean downloading the entire video file...so in the worst

case, that would be a full three times! So it takes a few
extra seconds to paste in those types and codecs, but
now you know why you should do it.

Now that you’ve seen some of the video markup, the
audio will seem simple by comparison. Once more, it’s
quite possible to let the HTML5 browser do a lot of the
work:

<audio controls src=”sample.ogg”>

</audio>

And again, in the real world, it’s recommended to
provide a number of format options for the browser:

<audio controls preload=”metadata”>

	 <source src=”sample.mp3”>

	 <source src=”sample.ogg”>

	 <!-- Flash fallback code or text would go

here -->

</audio>

Both the <video> and <audio> can take another
important parameter, shown above, called preload
(which was formerly implemented as autobuffer with
slightly different syntax). The values for preload can
be auto (download the media file to the browser in
advance), none (do not preload the media), or metadata
(just download enough metadata to discover the
duration and other information of the media file). So
with a little extra care in coding, you can make the user’s
experience much better.

8 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

Web Developer Basics:
The HTML5 Video Element

By David Fiedler and Scott Clark

TML5’s video element is conceptually easy to
work with, since at bottom it’s been designed
like the tag...just code and go:

<video src=”sample.mp4” width=”640”

height=”480”></video>

Unfortunately, in the real world, things aren’t quite so
easy. Due to licensing and other restrictions, you can’t
simply assume that the user’s software will properly
display your video in MPEG-4/H.264 format, so at this
point you’ll have to supply the same video in open
formats as well as providing a Flash-based fallback for
pre-HTML5 browsers--something like this:

<video controls width=”640” height=”480”

poster=”sample.jpg”>

<source src=”sample.mp4” type=”video/mp4”>

<source src=”sample.ogv” type=”video/ogg”>

<source src=”sample.webm” type=”video/webm”>

 <object width=”640” height=”480”

type=”application/x-shockwave-flash”

data=”player.swf”>

 <param name=”movie” value=”player.swf”>

 <param name=”flashvars” value=”controlba

r=over&image=sample.jpg&file=sample.mp4”>

 <img src=”sample.jpg” width=”640”

height=”360” alt=”Sample”

 title=”No direct video playback

capabilities, so please download the video

below”>

 </object>

</video>

<p> Download Video:

 Closed Format: <a href=”sample.

mp4”>”MP4”

 Open Format: <a href=”sample.

ogv”>”Ogg”

 WebM Format: <a href=”sample.

webm”>”WebM”

</p>

Since this isn’t the kind of thing most developers like
to memorize, it’s good that someone has written up a
handy free code generator that lets you specify all your
parameters and video sizes and so on. But there’s more
nitty-gritty to deal with, specifically transcoding those
extra formats.

Preaching To the Converted

Unless you have lots of video files and an actual
software budget, your best bet is free conversion
software. Currently, the best selection for that is
Handbrake, which is fully open source, runs on
Windows, Mac OS X, and Linux, and will convert most
multimedia file formats to MP4 or Ogg Theora (when

H

http://www.macupdate.com/app/mac/12987/handbrake

9 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

we get to audio, you’ll find that it works just as well
for those formats, too). If you’d rather be modern,
OS-independent, and stay in the cloud, sites such as
MediaConverter and Zamzar can accommodate you
with free online transcoding services (the latter site
even supports the relatively new WebM format).

The full list of attributes for the HTML5 video element at
this time includes the following, with usage notes:

•	 src - The URL of the video. This overrides
the source element, if present.

•	 poster - The URL of a still picture to
show while the video is not playing.

•	 preload - This can have the value none,
metadata, or auto. Auto will download the
entire file if possible; metadata will download
just the parameters so that the length, size, and
type of the video can be identified, and none
will do nothing, which saves bandwidth.

•	 autoplay - This boolean, if present,
triggers the video to play as soon as it is
fully buffered or ready to stream.

•	 loop - Also a boolean; if loop is present, the video will
repeat endlessly in the absence of user intervention.

•	 audio - This attribute, which controls the audio
portion of the video, is still in development.
Currently, it can take only a single value: muted,
which means that the audio volume will initially be
set to zero. The intent is to allow an autoplaying
video to start and get the user’s attention, but
without blaring audio that would cause the
user to close the entire tab in disgust :-)

•	 controls - A boolean attribute that specifies
the browser should provide a set of default

video controls. If it doesn’t appear, you’ll have
to design and code your own controls.

•	 width, height - these size attributes control the
size of the area reserved for the video on the
page, but not necessarily its exact dimensions.

While it takes a bit more work, generally in the Javascript
department, to create your own controls and error
handling, all it takes is some CSS to modify the look of
the video element:

<!DOCTYPE html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <title>File in same directory</title>

<style type=”text/css”>

video {

 width: 800px;

 height: 600px;

 position: relative;

 }

</style>

</head>

<body>

<P>

<video source src=”airplane.webm” controls

autoplay>

 Your browser does not support the video

tag.

</video>

<P>

</body>

</html>

http://www.mediaconverter.org/
http://www.zamzar.com/

10 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

You use the <audio> tag just like you use any other
element:

<audio autoplay=”autoplay” controls=”controls”>

 <source src=”music.ogg” />

 <source src=”music.mp3” />

</audio>

You can also include the source
file’s location in the beginning
<audio> tag, rather than
between the two, like this:

<audio src=”music.ogg”

controls=”controls”>

Also note that you can point the
src to a file located on the server
with your web page (a relative
URL, like /audio/music.ogg), or
a file located elsewhere on the
web (an absolute URL, such as
http://www.yoursite.com/music.
ogg).

You will likely want to include some text inside the tag so
that users whose browsers do not support the <audio>
tag will have a clue as to what is going on (and why they
aren’t seeing the audio control on the page). You do that
like this:

<audio src=”horse.ogg” controls=”controls”>

Your browser does not support the audio

element.

</audio>

You can use any HTML elements that are supported

HTML5 Primer: How To Use the Audio Tag
By David Fiedler and Scott Clark

ow we’re going to expand upon our
discussion on multimedia and delve further
into HTML5’s <audio> tag.

The <audio> tag is new to HTML, like the <video> tag,
and allows developers to embed music on their websites
(and unlike earlier attempts to add audio to a website,
it isn’t limited to old-fashioned
midi music). That said, it does
have limitations on the types of
files that can be used. Currently
any recent browser that is based
on Webkit, such as Chrome and
Safari, supports the use of regular
.mp3 files. Others, such as Firefox,
only support the .ogg format.

The good news is that you
can either convert your files
from .mp3 to .ogg (one audio
conversion tool, media.io, can be
used online) or just supply two
versions of your audio file, one
in each format. When Safari, for
instance, comes across the <audio> tag, it will ignore the
.mp3 file and move directly to the .ogg file.

So How Is the <audio> Tag Used on the Page?

When the audio tag is used, it will look something like
Figure 1 (obviously you will only see it if your browser
supports it):

Figure 1: The Audio Tag in Use

N

http://media.io/

11 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

within the <audio> tag, such as italics, bold, links, objects
such as Flash, etc.

The <audio> Tag’s Attributes

The <audio> tag supports the full range of standard
attributes in HTML5. These attributes are supported by
all HTML5 tags, with very few exceptions. They include:

•	 accesskey - this specifies a keyboard shortcut for a
given element

•	 class - this specifies a classname for a given element,
to be used in conjunction with a style sheet

•	 contenteditable - specifies whether a user is allowed
to edit the content

•	 contextmenu - specifies the context menu for a given
element

•	 dir - specifies the direction of the text for content in a
given element

•	 draggable - specifies if a user is allowed to drag a
given element

•	 dropzone - specifies the event that occurs when an
item or data is dragged and dropped into a given
element

•	 hidden - specifies if a given element is hidden or not

•	 id - specifies a unique identification
for a given element

•	 lang - specifies a language code for
the content in a given element

•	 spellcheck - specifies if a specific element will need
to be subjected to a spelling and grammar check

•	 style - defines an inline style for a specific element
tabindex - specifies the tab order of a specific
element

•	 title - specifies a title for a specific element

New attributes for the <audio> tag include the following:

•	 autoplay - if this attribute is included, the audio will
begin to play once it is ready

•	 controls - if this one is included, controls for the audio
file will be included on the page (which is a great
idea--it is very annoying to not have a way to stop the
audio from playing)

•	 loop - if this one is included, the audio will loop and
play again once it has finished

•	 preload - this one has three parameters: auto, which
plays once it has loaded, metadata, which only
displays the data associated with the audio file, and
none, which means it will not preload

•	 src - this one’s value is simply the URL of the audio file
you wish to play

You can see some of the new attributes in action here:

<audio loop=”loop” autoplay=”autoplay”

controls=”controls”>

 <source src=”music.ogg” />

 <source src=”music.mp3” />

</audio>

The <audio> tag has a lot of attributes which can be used
for additional controls, including the event attributes
in HTML5. Events include window events, which are
triggered for the window object, form events, which are
triggered by actions that occur within an HTML form,
keyboard and mouse events, and media events. Many of
the events are the same as those included with previous
versions of HTML.

12 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

doesn’t yet support the canvas element. Actually, it’s
more than “should”...it’s “must” in the words of the W3C
definition:

“When authors use the canvas element, they must
also provide content that, when presented to the user,
conveys essentially the same function or purpose as the

bitmap canvas. This content
may be placed as content of the
canvas element.”

So in a real-world web page,
you’d want to include something
that displays the closest
equivalent to the contents of
your fancy bitmapped graphic
canvas. If your canvas showed a
stock graph, you could use the
current stock price. The intent
is to allow the widest possible
audience to see the most
valuable and useful content, after
all. The good news is that the
current versions of all leading

modern browsers already support canvas...except, of
course, Internet Explorer (though it’s coming in IE9).

Also, note that you must name each specific canvas
element with its own id so you can address it later in your
JavaScript. And while most basic tutorials show all kinds
of boxes and graphic elements laboriously rendered
point by point, in reality most canvas applications will
involve user interactivity, image transformations, or
algorithm-based graphic rendering, such as Apple’s clock
widget. Or all three, such as this mind-boggling Canvas
Aquarium (http://widgets.opera.com/widget/5040/).

Web Developer Basics:
Using The HTML5 Canvas Element

By David Fiedler and Scott Clark

anvas is a unique concept. Unlike the rest of
the HTML world that consists of well-defined
pieces that designers and developers love
to place in exactly the right spot, the Canvas

element provides a virtual Etch-a-Sketch-like area where
almost anything can be made to happen. It’s relatively
easy to describe but, like most open-ended concepts,
more difficult to characterize.
Canvas is a bit-mapped area
whose width and height
dimensions are specified as
attributes (defaulting to 300 and
150 respectively); the purpose
can be virtually anything, and the
intention is that a canvas element
will be rendered by scripting.

Show Me the HTML5
Code!

Clearly the simplest possibility
is <canvas></canvas>, and that
gets you your very own 300x150
area, but you won’t see it
because the default is transparent (speaking of defaults,
anything you actually draw on a canvas is black unless
you specify otherwise). A more realistic beginning is
something like this:

<canvas id=”drawme” width=”400” height=”200”>

 If you can read this, your browser does not

support Canvas.

<canvas>

Note that, similar to the video element, you can (and
should) provide fallback content in case the browser

C

http://widgets.opera.com/widget/5040/

13 HTML5: An Introduction an Internet.com Developer eBook. © 2011, Internet.com, a division of QuinStreet, Inc.Back to Contents

HTML5: An Introduction

The Mozilla Developer Network Template

Mozilla’s Developer Network (http://developer.
mozilla.org/) has created a nice template for use in
demonstrating basic canvas functions, so we’ll use that as
the basis of our own example code:

<!DOCTYPE html>

<html lang=”en”>

 <head>

 <meta charset=”utf-8”>

 <title>Canvas Tutorial Template</title>

 <script type=”text/javascript”>

 function draw(){

 var canvas = document.

getElementById(‘tutorial’);

 if (canvas.getContext){

 var ctx = canvas.getContext(‘2d’);

//

// drawing code goes below here

//

 ctx.fillStyle = “rgb(255,0,0)”;

 ctx.fillRect(0, 0, 150, 150);

//

// drawing code goes above here

//

 }

 }

 </script>

 <style type=”text/css”>

 canvas { border: 1px solid black; }

 </style>

 </head>

 <body onload=”draw();”>

 <canvas id=”tutorial” width=”150”

height=”150”>

 Fallback content goes here.

 </canvas>

 </body>

</html>

The most important piece of all this is actually where you
call getElementById using your named canvas id (which
locates your canvas in the DOM), then call getContext
to initialize the actual drawing context. Once you have a
context (which we point to using ctx), you can manipulate
it using anything you like in the 2D drawing APIs.

And the Function Is....

In this case, we’ve used fillStyle to select solid red and
fillRect to describe the boundaries of the rectangle to
be drawn. You can now use this template to quickly
experiment with any or all of the other functions in the
APIs, by simply writing more complex code in place of
those two lines. The x,y origin is defined to be at the
top left, so knowing that, you can start making use of
functions such as:

•	 fillRect (x,y, width, height) - paints the described
rectangle (filled using the current fillStyle)

•	 strokeRect (x,y, width, height) - paints the described
rectangle outline (using the current strokeStyle)

•	 clearRect (x,y,width,height) - clears the described
rectangle and makes it transparent (transparent black,
to be technical)

For true drawing, you need the ability to draw lines
and curves, and place your virtual pen anywhere on the
canvas, so these functions are key:

•	 beginPath() - starts a new drawing

•	 moveTo(x,y) - places the pen at the x,y location

•	 lineTo(x,y) - draws a line from the pen
location to the x,y location

•	 arc(x, y, radius, startAngle, endAngle,
anticlockwise) - draws an arc at x,y using radius
from startAngle to endAngle (in radians). The
arc is drawn clockwise unless the optional
boolean anticlockwise parameter appears.

•	 stroke() - renders the drawing in outline form

•	 fill() - renders the drawing in filled form

http://developer.mozilla.org/
http://developer.mozilla.org/

